Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Tyler W. Green, Jeanette A.
Krause Bauer and William B. Connick*

Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA

Correspondence e-mail: bill.connick@uc.edu

## Key indicators

Single-crystal X-ray study
$T=175 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.026$
$w R$ factor $=0.065$
Data-to-parameter ratio $=20.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## Bis(1,4,7-trithiacyclononane- $\left.\kappa^{3} S, S^{\prime}, S^{\prime \prime}\right)$ iron(II) bis(perchlorate)

The title compound, $\left[\mathrm{Fe}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ or $\left[\mathrm{Fe}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right.\right.$ $\left.\left.\mathrm{S}_{2}\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, contains an octahedral $\mathrm{Fe}^{\mathrm{II}} \mathrm{S}_{6}$ core, with the Fe atom located on an inversion center. The asymmetric unit comprises two independent half cations and two anions.

## Comment

Intrigued by the possibility of using eight octahedral metal complexes as the vertices of a molecular crate (Hsu et al., 2003), we are investigating the iron(II) chemistry of facially coordinating ligands, such as 1,4,7-trithiacyclononane, [9]ane $S_{3}$. This tripodal ligand can conceivably act as a capping group that protects three of the coordination sites of an octahedral metal complex. In the course of these studies, we found that this ligand has a strong tendency to form [ $\mathrm{Fe}([9]-$ $\left.\left.\operatorname{aneS}_{3}\right)_{2}\right]^{2+}$, as previously noted by Fukui et al. (1990).

(I)

The title compound, (I), crystallizes with the Fe atoms of two independent cations on inversion centers, the asymmetric unit also containing two anions (Fig. 1). The packing of the complex in the $b c$ plane is depicted in Fig. 2. Compound (I) contains an octahedral $\mathrm{Fe}^{\mathrm{II}} \mathrm{S}_{6}$ core, with $\mathrm{S}-\mathrm{Fe}-\mathrm{S}$ angles in the range 89.42 (2)-89.92 (2) ${ }^{\circ}$. The $\mathrm{Fe}-\mathrm{S}$ bond distances are in the range 2.2508 (4)-2.2568 (4) $\AA$ for Fe 1 and a slightly larger variation is observed for distances about Fe 2 [2.2523 (4)-2.2613 (4) Å]. Similar bond variation, 2.243 (1)2.249 (1) $\AA$, is observed for $\left[\mathrm{Fe}\left([9] \mathrm{aneS}_{3}\right)_{2}\right] \mathrm{FeCl}_{4}($ Grillo et al., 1996). The related complexes $\left[\mathrm{Fe}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ (Wieghardt et al., 1985), $\left[\mathrm{Fe}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (Sowrey et al., 2002) and $\left[\mathrm{Fe}\left([9] \mathrm{aneS}_{3}\right)_{2}\right] \mathrm{Sb}_{2} \mathrm{Cl}_{8}$ (Willey et al., 1994) show somewhat larger variations in the $\mathrm{Fe}-\mathrm{S}$ distances [2.241 (1)2.259 (1), 2.2437 (7)-2.2581 (7) and 2.243 (2)-2.266 (2) A, respectively]. In contrast, the $\mathrm{Fe}-\mathrm{S}$ distances in $[\mathrm{Fe}([9]-$ aneS $\left.\left.3_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{3}$ (Blake et al., 1989) show the expected lengthening [2.276 (3)-2.285 (3) Å], related to reduction of $\pi$ backbonding ability.

## Experimental

Compound (I) was prepared in a manner similar to that described by Wieghardt et al. (1985).


Figure 1
The structure of (I), showing the atomic labeling and $50 \%$ probability ellipsoids. The unlabeled half of each cation is generated by inversion centers at atoms Fe 1 and Fe 2 .


Figure 2
Packing diagram of (I) in the $b c$ plane.

## Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~S}_{2}\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$
$M_{r}=615.42$
Triclinic, $P \overline{1}$
$a=8.7854$ (2) $\AA$ 。
$b=11.3729$ (1) $\AA$
$c=11.5862(3) \AA$
$\alpha=85.828(1)^{\circ}$
$\beta=84.276(1)^{\circ}$
$\gamma=73.129(1)^{\circ}$
$V=1101.13(4) \AA^{3}$
$Z=2$
$D_{x}=1.856 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7696 reflections
$\theta=2.4-28.2^{\circ}$
$\mu=1.54 \mathrm{~mm}^{-1}$
$T=175$ (2) K
Rod, purple
$0.40 \times 0.16 \times 0.16 \mathrm{~mm}$

## Data collection

Bruker SMART 1K platform CCD
diffractometer
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.602, T_{\text {max }}=0.782$
11893 measured reflections

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0306 P)^{2}\right. \\
&+0.7215 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.49 \mathrm{e}^{\AA} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.065$
$S=1.03$
5333 reflections
265 parameters
H -atom parameters constrained

5333 independent reflections
4592 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 15$
$l=-15 \rightarrow 15$

H atoms were either located directly from a difference map or calculated based on geometric criteria ( $\mathrm{C}-\mathrm{H}=0.99 \AA$ ) and treated with a riding model in subsequent refinement cycles. The isotropic displacement parameters for the H atoms were defined as $1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Crystal Impact, 1997); software used to prepare material for publication: SHELXTL.

Data were collected through the Ohio Crystallography Consortium, funded by the Ohio Board of Regents 1995 Investment Fund (CAP-075) and located at the University of Toledo, Instrumentation Center in A\&S, Toledo, OH 43606, USA.

## References

Blake, A. J., Holder, A. J., Hyde, T. I. \& Schröder, X. (1989). J. Chem. Soc. Chem. Commun. pp. 1433-1434.
Bruker (1997). SMART (Version 5.051) and SAINT (Version 5.A06). Bruker AXS Inc., Madison, Wisconsin, USA.
Crystal Impact (1997). DIAMOND. Version 2.1e. Crystal Impact, Bonn, Germany.
Fukui, H., Ito, M., Moro-oka, Y. \& Kitajima, M. (1990). Inorg. Chem. 29, 28682870.

Grillo, V. A., Gahan, L. R., Hanson, G. R. \& Hambley, T. W. (1996). Polyhedron, 15, 559-563.
Hsu, S. C. N., Ramesh, M., Espenson, J. H. \& Rauchfuss, T. B. (2003). Angew. Chem. Int. Ed. 42, 2663-2666.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Sowrey, F. E., Blower, P. J., Jeffery, J. C., MacLean, E. J. \& Went, M. J. (2002). Inorg. Chem. Commun. 5, 832-836.
Wieghardt, K., Küppers, H.-J. \& Weiss, J. (1985). Inorg. Chem. 24, 3067-3071.
Willey, G. R., Palin, J., Lakin, M. R. \& Alcock, N. W. (1994). Transition Met. Chem. 19, 187-190.

